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Abstract

This paper presents the Large Vision Diffusion Transformer
(LaVin-DiT), a scalable and unified foundation model de-
signed to tackle over 20 computer vision tasks in a gener-
ative framework. Unlike existing large vision models di-
rectly adapted from natural language processing architec-
tures, which rely on less efficient autoregressive techniques
and disrupt spatial relationships essential for vision data,
LaVin-DiT introduces key innovations to optimize genera-
tive performance for vision tasks. First, to address the high
dimensionality of visual data, we incorporate a spatial-
temporal variational autoencoder that encodes data into a
continuous latent space. Second, for generative modeling,
we develop a joint diffusion transformer that progressively
produces vision outputs. Third, for unified multi-task train-
ing, in-context learning is implemented. Input-target pairs
serve as task context, which guides the diffusion transformer
to align outputs with specific tasks within the latent space.
During inference, a task-specific context set and test data
as queries allow LaVin-DiT to generalize across tasks with-
out fine-tuning. Trained on extensive vision datasets, the
model is scaled from 0.1B to 3.4B parameters, demonstrat-
ing substantial scalability and state-of-the-art performance
across diverse vision tasks. This work introduces a novel
pathway for large vision foundation models, underscoring
the promising potential of diffusion transformers. The code
and models will be open-sourced.

1. Introduction

Large language models (LLMs) like GPT [10] and
LLaMA [58] have rapidly gained widespread attention and
transformed the field, demonstrating the strong capability
to handle a wide range of language tasks within a unified

*Corresponding author.

(a) Autoregressive Modeling

(b) Diffusion Modeling 𝑁 timesteps

Figure 1. Comparison of autoregressive and diffusion model-
ing. (a) In autoregressive modeling, visual data is divided into
a sequence of patches and transformed into a one-dimensional se-
quence. The model then predicts each token sequentially from left
to right and top to bottom, which is computationally intensive for
high-dimensional visual data. Besides, tokens marked in red and
blue illustrate disrupted spatial dependencies, highlighting the lim-
itations of preserving spatial coherence. (b) In contrast, diffusion
modeling denoises all tokens in parallel across N timesteps, sig-
nificantly improving computational efficiency and preserving es-
sential spatial structures crucial for high-performance vision tasks.

framework [1]. This breakthrough of integrating diverse
language tasks into a single large model has sparked mo-
mentum to develop similar large models for computer vi-
sion. The potential to create large vision models (LVMs)
capable of generalizing across multiple vision tasks repre-
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sents a promising step toward a more versatile, scalable, and
efficient approach to vision-based AI [5, 8, 39, 63].

However, constructing LVMs presents greater complex-
ity than LLMs due to the inherently diverse and high-
dimensional nature of vision data, as well as the need to
handle variations in scale, perspective, and lighting across
tasks [31, 48, 52, 70]. To handle the problem, recent
work [5] has developed a sequential modeling method that
learns from purely vision data by representing images,
videos, and annotations in a unified “visual sentence” for-
mat. This method enables the model to predict sequen-
tial vision tokens from a vast dataset, entirely independent
of language-based inputs (see Figure 1(a)). Although this
method has shown promising results in diverse vision tasks,
it faces two primary challenges. Specifically, the first is-
sue concerns the efficiency limitations inherent in autore-
gressive sequence modeling [55], as it demands token-by-
token prediction, which is computationally intensive for
high-dimensional vision data [49]. The second issue is the
disruption of spatial coherence when converting vision data
into a sequential format, which compromises the preserva-
tion of spatial dependencies crucial for performance in vi-
sion tasks [77].

In this paper, we introduce a large vision diffusion trans-
former (LaVin-DiT) to advance the development of next-
generation LVMs. LaVin-DiT enjoys better computational
efficiency and effectively preserves spatial relationships
within vision data, thereby achieving superior performance
across diverse vision tasks (see Figure 1(b)). Technically,
to tackle the high-dimensional nature of vision data, we in-
troduce a spatial-temporal variational autoencoder [30] that
encodes data (i.e., image and video) into a continuous la-
tent space, allowing compact representation while preserv-
ing essential spatial and temporal features. This reduces
computational demands and improves efficiency without
sacrificing the model’s ability to capture complex patterns.
Besides, for generative modeling, we augment an existing
diffusion transformer and propose a joint diffusion trans-
former with full-sequence joint attention. This module syn-
thesizes visual outputs through parallel denoising steps, ef-
fectively reducing sequential dependencies to enhance pro-
cessing efficiency while maintaining the spatial coherence
essential for vision tasks. Moreover, to support unified
multi-task training [61], we incorporate in-context learn-
ing [10, 19, 65, 73], where input-target pairs guide the dif-
fusion transformer in aligning outputs with specific tasks.
During inference, LaVin-DiT leverages task-specific con-
text sets and test data as queries to adapt to various tasks
without fine-tuning. This capability enables LaVin-DiT to
achieve robust generalization across diverse tasks, leading
to a versatile solution for complex vision applications.

We conduct comprehensive experiments to demonstrate
the superiority of LaVin-DiT. Results show that LaVin-DiT

significantly outperforms the strongest baseline LVM [5]
on various vision benchmarks. For instance, it achieves a
24 lower AbsRel in NYU-v2 depth estimation [52]. Be-
sides, LaVin-DiT offers 1.7 ∼ 2.3× faster inference speeds
than LVM [5] across resolutions ranging from 256 × 256
to 512 × 512. Evaluations across different model sizes
showcase the scalability and fast convergence of LaVin-DiT
across multiple complex vision tasks. Finally, we observe
that increasing the task context length consistently enhances
performance across a diverse array of tasks. These promis-
ing results establish LaVin-DiT as a highly scalable, effi-
cient, and versatile model, showing a new pathway for large
vision foundation models.

2. Related Work

Large vision model. Developing a universal framework
for diverse tasks across information sources is a longstand-
ing goal in deep learning [39]. Natural language process-
ing has achieved this with ChatGPT1 that demonstrates ver-
satility across numerous language tasks, e.g., summariza-
tion, reasoning, and translation. In contrast, computer vi-
sion is relatively lacking in universal frameworks, largely
due to the complexity and diversity of visual data and tasks.
Existing methods of universal vision frameworks gener-
ally follow two main pathways: image-resembling gener-
ation [8, 14, 63] and sequential modeling [5, 33].

The image-resembling generation methods reformulate
visual tasks as image generation problems, which allows
models to handle dense visual predictions through inpaint-
ing and reconstruction tasks [8]. For instance, Painter [63]
formulates dense prediction tasks as masked image inpaint-
ing, demonstrating in-context capabilities across multiple
vision tasks. By leveraging pre-trained diffusion mod-
els [49], several methods [24, 43, 60, 64] utilize visual or
textual instruction to guide generation and enhance adapt-
ability across various tasks. The sequential modeling meth-
ods are largely inspired by breakthroughs in large language
models and apply the sequence-to-sequence framework to
visual data [58]. For these methods, visual data is typi-
cally quantized into sequences of discrete tokens [59]. The
model is optimized through next-token prediction [10]. Re-
cently, Bai et al. [5] introduce a framework that extends
this concept to vision without relying on linguistic data,
which treats visual data as a “visual sentence”. By repre-
senting images and videos as one-dimensional sequences,
this method [5] enables a unified transformer that can tackle
image and video tasks within a single framework, expand-
ing the scope of sequential modeling in computer vision.

In this paper, from the respective of image-resembling
generation, we propose a universal diffusion framework
with a transformer architecture tailored for visual data,

1https://openai.com/index/chatgpt/
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which preserves spatial-temporal structure and minimizes
information loss. Trained exclusively on visual data, our
flexible framework unifies image and video tasks, advanc-
ing toward a generalist model in computer vision.

Diffusion transformer. By resorting to vision trans-
former (ViT) [21, 32, 37], recent advancements [6, 7, 13,
17, 23, 41, 75] in generative modeling achieves significant
improvements in scalability and performance for both im-
age [12, 20, 45, 57, 77] and video generation [26, 40, 42,
68]. Among these advancements, U-ViT [6] treats all in-
puts as tokens by combining transformer blocks with a U-
net architecture. DiT [41] employs a straightforward and
non-hierarchical transformer structure, showcasing the scal-
ability and versatility of diffusion transformers. MDT [23]
and MaskDiT [75] enhance the training efficiency of DiT
by using a masking strategy [27]. Subsequently, Stable
Diffusion 3 [20] introduces a novel transformer-based ar-
chitecture for text-to-image generation, which enables bidi-
rectional interaction between image and text. Furthermore,
diffusion transformers demonstrate robust capabilities for
spatial-temporal modeling in video generation [9]. Previous
methods [13, 40] utilize separate spatial and temporal atten-
tion mechanisms to reduce intensive computational costs.
Besides, recent works [26, 42, 68] have proposed using 3D
full attention to capture spatial-temporal information, en-
suring consistency for large-moving objects. While diffu-
sion transformers have shown impressive potential in visual
content generation, their capability to serve as a large vi-
sion model unifying multiple vision tasks remains underex-
plored. In this paper, we introduce a new joint diffusion
transformer with full-sequence joint attention that effec-
tively integrates diverse vision tasks into a cohesive frame-
work, elevating diffusion transformers to a new level of uni-
fied understanding and generation.

In-context learning. In-context learning is initially con-
ceptualized with GPT-3 [10]. It has revolutionized the ap-
proach to task-specific model training by allowing models
to infer and execute tasks based directly on contextual ex-
amples provided in prompts [72]. This paradigm shift en-
ables models to perform complex reasoning and novel pat-
tern recognition without direct training on those specific
tasks. Extending beyond text, Flamingo [3] incorporates vi-
sual inputs and broadens in-context learning to multi-modal
tasks such as image captioning, visual question answering,
and optical character recognition. This demonstrates the
model’s ability to integrate and interpret both textual and
visual data, enhancing its application across different do-
mains. In the realm of computer vision, the concept of in-
context learning is explored through methods such as vi-
sual prompting [8], which infers tasks directly from con-
catenated image examples and queries. In this paper, we
build on this idea. A set of examples are sampled as task
definitions and concatenated with the input query for the

model, to obtain predictions accordingly.

3. Method

Problem setup. Computer vision includes a series of tasks
like object detection [11, 35, 48] and panoptic segmenta-
tion [15, 31, 66], which are typically handled by specialized
models designed for specific input-target mappings [22].
While effective for single tasks, this specialization restricts
model adaptability and scalability across multiple tasks or
diverse visual data. To overcome this limitation, we aim to
design a conditional generative framework that unifies mul-
tiple vision tasks within a single cohesive model. Specifi-
cally, given a query x (e.g., an image or a video), the frame-
work produces the corresponding prediction ŷ to approxi-
mate the target y conditioned on a set of input-target pairs s.
These conditioning pairs provide task definitions and guid-
ance, enabling the model to flexibly adapt to different tasks
according to the supplied examples. Formally, the objective
is to model the conditional distribution p(y|x, s).
Framework overview. As shown in Figure 2(a), the pro-
posed Large Vision Diffusion Transformer (LaVin-DiT)
framework integrates a spatial-temporal variational autoen-
coder (ST-VAE) with a joint diffusion transformer to unify
multiple vision tasks. Given a vision task, e.g., panoptic
segmentation, we first sample a set of input-target pairs as
the task definition. Afterward, the set and other visual ex-
amples are fed into ST-VAE, which are encoded into latent
representations. Subsequently, the encoded representations
are patchified and unfolded into a sequential format. The set
and input visual data form the conditional latent presenta-
tion zc, while the target is perturbed with random Gaussian
noise, yielding a noisy latent representation zt. Both zc and
zt are then put into the joint diffusion transformer (J-DiT),
which denoises zt to recover a clean latent representation
within the shared latent space. Lastly, the recovered latent
representation is passed through the ST-VAE decoder to re-
construct the target in raw pixel space. Below we provide a
detailed technical exposition of ST-VAE and J-DiT.

3.1. LaVin-DiT Modules
3.1.1. ST-VAE
It is computationally demanding to process visual data in
raw pixel space [49]. To address this, we propose to use a
spatial-temporal variational autoencoder (ST-VAE) [9, 62,
74]. ST-VAE can efficiently compress spatial and temporal
information, and encode them from pixel space into com-
pact latent space. As illustrated in Figure 2(b), ST-VAE uses
causal 3D convolutions and deconvolutions to compress and
reconstruct visual data. It overall includes an encoder, a de-
coder, and a latent regularization layer. These components
are structured into four symmetric stages with alternating
2× downsampling and upsampling. The first two stages

3
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Figure 2. Overview of Large Vision Diffusion Model (LaVin-DiT). As shown in panel (a), the model initially compresses input visual
data from the pixel space into a latent space, where multiple input-target pairs serve as the task context. A target is perturbed with Gaussian
noise through a diffusion process. Guided by the task context and query, the Joint Diffusion Transformer (J-DiT) iteratively denoises this
noisy target over N timesteps to recover a clean latent representation. The prediction is then generated via the ST-VAE decoder. Panels
(b) and (c) provide architectural details of the ST-VAE and J-DiT, respectively. “Down.” and “Up.” indicate the downsampling and
upsampling, respectively. Concatenation is represented by ⊙.

operate on both spatial and temporal dimensions, while the
last stage affects only the spatial dimension, achieving an
effective 4×8×8 compression and reducing computational
load. Besides, we apply a Kullback-Leibler (KL) constraint
to regularize the Gaussian latent space.

To prevent future information leakage and its adverse ef-
fect on temporal predictions, we pad all locations at the start
of the temporal convolution space. Additionally, to support
both image and video processing, we treat the first frame of
an input video independently, compressing it only spatially
to maintain temporal independence. Subsequent frames are
compressed along both spatial and temporal dimensions.
The encoder of ST-VAE compresses the input to a lower-
dimensional latent space, and the reconstruction is achieved
through a decoding process. Training the ST-VAE occurs
in two stages: we first train on images alone, then jointly
on both images and videos. During each stage, we optimize
the model using a combination of the mean squared error,
perceptual loss [49, 71], and adversarial loss [49].

3.1.2. J-DiT

Diffusion transformers (DiT) [41] have emerged as a pow-
erful method for generative modeling. Our joint diffusion
transformer (J-DiT) builds upon DiT but introduces modi-
fications to support the task-conditioned generation. A key
distinction from the original DiT is our consideration of two
conceptually different latent representations. The condition
latent representation is clean, while the target latent repre-
sentation is perturbed by Gaussian noise, resulting in poten-

tially distinct value ranges for the two. To handle the differ-
ence and improve alignment between task-specific and vi-
sual information, we construct separate patch embeddings
for the condition and target latents. Each embedding layer
uses a patch size of 2×2, which allows for tailoring the rep-
resentations for each latent type. As shown in Figure 2, the
sampled timestep t, along with the condition and target se-
quences, is fed into a series of diffusion transformer layers.
Building on the MM-DiT [20] architecture, we introduce
condition- and target-specific adaptive RMS normalization
(AdaRN) to modulate each representation space indepen-
dently. This is achieved through distinct timestep embed-
dings for the condition and target within AdaRN layers.

Full-sequence joint attention. Full-sequence joint atten-
tion is key in our transformer layers, which processes con-
dition and noisy target sequences together to enhance task-
specific alignment. As shown in Figure 2(c), the condi-
tion and target sequences are linearly projected, concate-
nated, and processed by a bidirectional attention module,
allowing each to operate in its own space while consider-
ing the other. To improve speed and memory efficiency,
we replace multi-head attention with grouped-query atten-
tion [2], which groups query heads to share a single set of
key-value heads. This approach reduces parameters while
retaining expressiveness, closely matching standard multi-
head attention performance. Besides, to stabilize training
with larger models and longer sequences, we add QK-Norm
before query-key dot products to control attention entropy
growth. Following [56], we also apply sandwich normal-
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ization after each attention and FFN layer to maintain acti-
vation magnitudes amid residual connections.

3D rotary position encoding. Unlike [5], we argue that it
is sub-optimal to model visual data as a one-dimensional se-
quence, because 1D positional embedding is limited in cap-
turing precise spatial-temporal positions. Instead, by treat-
ing multiple image-annotation pairs or video clips as a sin-
gle continuous sequence, we can use 3D Rotary Position
Encoding (3D RoPE) [54] to represent spatial-temporal re-
lationships concisely. Then, each location in a video can
be expressed by a 3D coordinate. With the introduction
of 3D RoPE, we provide a unified and accurate spatial-
temporal representation of positional encoding for various
vision tasks.

Training procedure of J-DiT. We train J-DiT using flow
matching [36] in the latent space. Specifically, given a
representation z0 and noise z1 ∼ N (0, 1), flow match-
ing defines a linear interpolation based forward process:
zt = tz0 + (1 − t)z1, where the timestep t ∈ [0, 1]. This
forward process induces a time-dependent velocity field
v(zt, t) that drives the flow along the linear path in the di-
rection of (z0 − z1). The velocity field defines an ordinary
differential equation (ODE): dzt = v(zt, t)dt. We employ
J-DiT that is parameterized by θ, to predict the velocity field
that transforms noise into a clean latent representation. The
training objective of flow matching is to directly regress the
target velocity field, leading to the Conditional Flow Match-
ing (CFM) loss [36]:

ℓCFM =

∫ 1

0

E[|vθ(zt, t)− (z0 − z1)|22]dt. (1)

Generation procedure of J-DiT. Upon completion of J-

DiT training, we use it to generate new representations by
integrating from the noise distribution toward representa-
tion distribution. Specifically, starting from noise z′

1 ∼
N (0, 1) at t = 1, we integrate the learned J-DiT backward
to t = 0 to obtain a representation z′

0. For instance, us-
ing the Euler method, we discretize the time interval [0,1]
to N steps with a negative step size ∆t = −1/N to in-
dicate backward integration in time. At each step k =
0, 1/N, . . . , (N − 1)/N , we update the time and generated
representation as follows:

t(k+1/N) = t(k) +∆t, (2)

z(k+1/N) = z(k) + vθ(z
(k), t(k))∆t, (3)

where t(0) = 1, t(1) = 0, z(0) = z′
1, and z(1) = z′

0. By
iteratively applying these updates, we obtain a new presen-
tation for the following decoding process of ST-VAE.

3.2. LaVin-DiT Inference
After completing the training of LaVin-DiT, the model be-
comes versatile and is ready to be applied across a range of

downstream tasks. Specifically, when given a query (e.g., an
image or a video) for any chosen task, we randomly sample
a set of input-target pairs that define the task. These pairs,
alongside the visual input and a Gaussian noise component,
are then fed into the Joint Diffusion Transformer (J-DiT).
Within J-DiT, these elements are processed to generate a
latent representation. Finally, this latent representation is
passed through the ST-VAE decoder, which transforms it
into the raw pixel space to produce the desired prediction.
To better understand this inference procedure, please refer
to Figure 2(a).

4. Experiments
4.1. Setup

Training data. To unify multiple computer vision tasks, we
construct a large-scale multi-task dataset that encompasses
indoor and outdoor environments, spanning real-world and
synthetic domains. This dataset comprises approximately
3.2 million unique images [16, 18, 34, 51, 76] and 0.6 mil-
lion unique videos [25, 28, 53], covering over 20 tasks:
• Image-based tasks: object detection, instance segmenta-

tion, panoptic segmentation, pose estimation, edge ex-
traction, depth estimation, surface normal estimation, in-
painting, colorization, image restoration tasks (e.g., de-
raining, de-glass blur, and de-motion blur), depth-to-
image, and normal-to-image generation.

• Video-based tasks: frame prediction, video depth estima-
tion, video surface normal estimation, video optical flow
estimation, video instance segmentation, depth-to-video,
and normal-to-video generation.

To overcome the limitations of large-scale annotations for
depth and surface normal estimation, we generate pseudo
depth and normal maps on ImageNet-1K [18] by utilizing
Depth-anything V2 [67] and Stable-Normal (turbo) [69], re-
spectively.

Implementation details. We conduct training in two
stages, progressively increasing the image resolution. In the
first stage, we train at a 256 × 256 resolution for 100,000
steps, leveraging DeepSpeed ZeRO-2 [44] optimization and
gradient checkpointing to manage memory and computa-
tional efficiency. We employ a global batch size of 640
and use an AdamW optimizer [38] with a learning rate
of 0.0001, betas set to 0.9 and 0.95, and weight decay of
0.01. This setup provides stable training across configu-
rations without the need for a warmup or additional regu-
larization techniques. In the second stage, we upscale the
resolution to 512 × 512 and continue training for an addi-
tional 20,000 steps, while the learning rate is adjusted to
0.00005. Other hyperparameters are retained from the first
stage. This two-stage strategy enables efficient scaling, en-
suring optimal performance across resolutions. By default,
we utilize 20 timesteps (N = 20) during inference. All ex-
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periments are conducted on 64×NVIDIA A100-80G GPUs.

Evaluation protocols. We assess our model on a compre-
hensive range of computer vision tasks spanning both image
and video domains. Following established protocols, we re-
port standard metrics for each task.

4.2. Main Results

Quantitative analysis. To assess the effectiveness of our
proposed method, we conduct extensive experiments across
a broad range of computer vision tasks and report results
of the 3.4B model by default, as summarized in Tables 1
and 2. Our method consistently outperforms existing base-
lines across multiple tasks, including challenging cases such
as unseen foreground segmentation and single-object detec-
tion, demonstrating superior generalization and adaptability
across diverse scenarios. Note that unless otherwise speci-
fied, we report LaVin-Dit (3.4B) performance.

As shown in Table 1, we report the performance on fore-
ground segmentation and single object detection across dif-
ferent splits. Our LaVin-DiT achieves significant improve-
ments over baseline methods in all splits. Specifically, in the
foreground segmentation task, we attain mIoUs of 67.87%,
75.80%, 66.98%, and 66.90% across four splits, consis-
tently outperforming previous methods such as LVM [5]
and MAE-VQGAN [8] by a substantial margin. Addi-
tionally, for single object detection, our model demon-
strates strong performance, achieving top results in all
splits. Notably, we achieve a mIoU of 68.88% in Split 4,
which is a considerable margin of 19.96% over the best-
performing baseline LVM. These significant gains highlight
our model’s ability to effectively segment and detect objects
across a range of scenarios, even when faced with tasks un-
seen during training. Following prior work [5, 8], we further
evaluate our model in the colorization task, where lower
LPIPS and MSE values indicate superior performance. As
shown in Table 1, our method achieves an LPIPS of 0.26
and an MSE of 0.24, significantly outperforming all base-
lines. These results underscore our model’s capability to
generate realistic and natural colors from grayscale images,
which is essential in restoration and artistic fields.

To validate the ability of our model to understand the ge-
ometric structure of 3D scenes, we evaluate it on NYU-v2
depth estimation and surface normal estimation tasks [52],
as shown in Table 2. As Bai et al. [5] do not report re-
lated results in their paper, we conduct evaluations using
their official 7B model2. For depth estimation, our model
achieves an AbsRel of 6.2 and a threshold accuracy δ1 of
96.1%, demonstrating competitive performance compared
to expert models such as Marigold [29] and DPT [47]. In
the surface normal estimation task, our method achieves an
MAE of 15.901 and accuracy within a < 11.25◦ threshold

2https://huggingface.co/Emma02/LVM_ckpts

of 58.382, surpassing the powerful expert model StableNor-
mal [69]. This performance underscores our model’s pro-
ficiency in estimating surface orientations accurately, en-
hancing its applicability in tasks requiring precise geomet-
rical understanding, such as augmented reality and 3D re-
construction. These results reflect our model’s capability
to comprehend the geometric structure of 3D scenes with
precision, even in complex environments, which is crucial
for real-world applications like 3D scene reconstruction and
spatial perception. Furthermore, we compare our LaVin-
DiT to LVM on the inpainting task. Using 2,500 randomly
selected images from the ImageNet-1K validation set, our
model achieves an FID of 1.65, which greatly improves over
the FID of 4.05 obtained by LVM.

Qualitative analysis. As shown in Figures 3, we present
qualitative results in a wide variety of image-based and
video-based tasks. Our model consistently follows task
contexts and precisely generates the corresponding predic-
tions. Furthermore, given sequential frames with task con-
texts, our model generates predictions for the subsequent 12
frames, which exhibits its ability to handle temporal consis-
tency and scene dynamics effectively.

4.3. Scalability

To investigate the scalability of the proposed LaVin-DiT,
we conduct experiments with three model sizes, i.e., 0.1B,
1.0B, and 3.4B parameters. We train the three models for
100,000 steps. Figure 4 illustrates the training loss curves,
which shows that larger models consistently achieve lower
loss values. Additionally, the 3.4B model converges more
rapidly, reaching smaller loss values in fewer training steps.
This accelerated convergence suggests that larger models
are better equipped to capture complex data patterns, lead-
ing to improved learning efficiency. The observed training
dynamics underscore the advantages of scaling up model
capacity for complex vision tasks, where larger models can
more effectively capture diverse data characteristics.

Beyond training dynamics, the model size also has a sub-
stantial impact on downstream task performance. This is ev-
ident in colorization and depth estimation tasks, which were
selected for their distinct requirements in capturing color
fidelity and spatial structure. As seen in Figure 5, model
performance improves consistently as its scale increases.
Specifically, for colorization, the 3.4B model achieves an
MSE of 0.273, significantly outperforming the 1.0B and
0.1B models that achieve MSEs of 0.311 and 0.609, respec-
tively. Similarly, in depth estimation, the 3.4B model attains
an AbsRel of 6.2, compared to 6.5 and 7.6 for the 1.0B and
0.1B models. These results demonstrate that larger models
indeed deliver enhanced performance across multiple tasks,
affirming LaVin-DiT as a scalable and adaptable framework
for high-performance vision applications.

6
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Table 1. Comparison on foreground segmentation, single object detection, and colorization. For foreground segmentation and single
object detection, we report “mIoU” (higher is better). For colorization, we report “LPIPS” [71] and “MSE” (lower is better). Note that
foreground segmentation and single object detection are unseen tasks during our training.

Method Foreground Segmentation (mIoU ↑) Single Object Detection (mIoU ↑) Colorization ↓

Split 1 Split 2 Split 3 Split 4 Split 1 Split 2 Split 3 Split 4 MSE LPIPS

MAE [8] 17.42 25.70 18.64 16.53 5.49 4.98 5.24 5.84 0.43 0.55
MAE-VQGAN [8] 27.83 30.44 26.15 24.25 24.19 25.20 25.36 25.23 0.67 0.40
LVM [5] 48.94 51.29 47.66 50.82 48.25 49.60 50.08 48.92 0.51 0.46

LaVin-DiT 67.87 75.80 66.98 66.90 67.85 69.32 68.76 68.88 0.24 0.26

··

··

··

··

Task Context Query Prediction

Figure 3. Qualitative results on diverse image and video-based tasks. The first ten rows show image-based tasks, where each row
contains a sequence of images interleaved with annotations, followed by a query. The last image is predicted by the model (marked in
red). The last four rows show video-based tasks, where each row includes a video sequence with a series of target frames as task context,
followed by a query frame. A set of frames in the red box indicates the model’s predictions. Best viewed in color.

4.4. Inference Latency Analysis

As demonstrated in Figure 6, we compare the inference la-
tency of LaVin-DiT and LVM (both 7B models) across in-

creasing resolutions, demonstrating that our method is con-
sistently more efficient. At a resolution of 256, LaVin-DiT
requires only 4.67 seconds per example, while LVM takes
8.1 seconds, with this efficiency gap widening at higher res-

7



Figure 4. Training loss curves for
LaVin-DiT of varying model sizes. The
3.4B model demonstrates faster conver-
gence, achieving lower training losses than
smaller models as training progresses.

Figure 5. Performance for LaVin-DiT
of varying sizes. Comparison of LaVin-
DiT with different parameters on coloriza-
tion (MSE) and depth estimation (AbsRel).
Lower values indicate better performance.

Figure 6. Inference latency comparison.
LaVin-DiT consistently achieves lower la-
tency than LVM [5] across different resolu-
tions, as tested on an A100-80G GPU with 8
input-target pairs.

Figure 7. Effect of task context length. Longer task context can consistently improve the performance of downstream tasks.

Table 2. Comparison on NYU-v2 depth estimation, surface
normal estimation and ImageNet inpainting [18, 52]. For depth
estimation, we report absolute relative difference (AbsRel) and
threshold accuracy (δ1). For surface normal estimation, we report
mean angular error (MAE) and angle accuracy within a threshold
(< 11.25◦). We report FID for inpainting. † denotes evaluations
on the official 7B model released by [5].

Method Depth Estimation Normal Estimation Inpainting

AbsRel (↓) δ1 (↑) MAE (↓) < 11.25◦ (↑) FID (↓)

DPT [47] 9.8 90.3 - - -
StableNormal [69] - - 19.707 53.042 -
Marigold [29] 6.0 95.9 20.864 50.457 -

LVM† [5] 30.2 52.3 23.433 44.836 4.05
LaVin-DiT 6.2 96.1 15.901 58.382 1.65

olutions (e.g., 20.1 seconds v.s. 47.2 seconds at 512). This
difference underscores a key advantage of diffusion models
for vision tasks: unlike autoregressive models that process
tokens sequentially and become increasingly time-intensive
with larger inputs, diffusion models process tokens in par-
allel, allowing them to scale more effectively. This par-
allelism makes our LaVin-DiT a more suitable choice for
large-scale vision applications.

4.5. Effect of Task Context Length
In-context learning enables the model to adapt to new tasks
using a few examples, with performance generally improv-
ing as more examples are provided. We investigate this by
assessing the effect of task context length across ten down-
stream tasks. As shown in Figure 7, the model consistently
benefits from longer task contexts, achieving notable per-
formance gains. For instance, with more input-target pairs,
LaVin-DiT achieves lower FID in depth-to-image genera-
tion and higher PSNR in de-motion blur tasks. These results
demonstrate that LaVin-DiT effectively leverages extended
task context, highlighting its capacity to utilize additional
information for enhanced task adaptation and accuracy.

5. Conclusion
We present LaVin-DiT, a scalable and unified foundation
model for computer vision that integrates a spatial-temporal
variational autoencoder and a diffusion transformer to effi-
ciently process high-dimensional vision data while preserv-
ing spatial and visual coherence. Through in-context learn-
ing, LaVin-DiT adapts effectively to a wide range of tasks
without fine-tuning, which shows remarkable versatility and
adaptability. Extensive experiments validate LaVin-DiT’s
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scalability and performance, positioning it as a promising
framework for developing generalist vision models.

Limitations. Despite its advantages, LaVin-DiT is lim-
ited by current constraints in large-scale training data, di-
verse task annotations, and computational resources, espe-
cially in comparison to large language models. While our
model achieves strong results on seen tasks and related un-
seen tasks, it struggles with generalization when task def-
initions deviate significantly from the training distribution.
This limitation highlights a key challenge in developing vi-
sion models that can generalize effectively to entirely new
tasks defined solely by task context.

Future work. Future research should explore scaling
LaVin-DiT further in terms of model capacity, dataset di-
versity, and task complexity to push the boundaries of vision
generalization. We anticipate that as these elements expand,
LaVin-DiT and similar models may gain the ability to han-
dle arbitrary (out-of-training) vision tasks, guided only by a
few input-target pairs. Additionally, investigating methods
to select optimal task context automatically could provide a
rapid and effective pathway to enhance model performance,
ensuring that it leverages the most relevant examples for
each task. These directions will drive further advances in
developing robust, adaptable, and highly generalized foun-
dation models for computer vision.
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LaVin-DiT: Large Vision Diffusion Transformer

Supplementary Material

A. More Technical Details of LaVin-DiT

A.1. Details of 3D RoPE
Recall that we represent task context and query as a unified
sequence of frames, which is a 3D representation. After-
ward, we extend RoPE from 1D to 3D format to capture
the essential structure of visual data. Specifically, each to-
ken in an input sequence is associated with a 3D coordi-
nate (t, x, y), representing its position in temporal and spa-
tial dimensions. The 3D RoPE encodes positional informa-
tion by decomposing it into three separate 1D RoPEs along
the temporal and spatial axes, allowing the model to cap-
ture relative positional relationships across all dimensions
inherently.

Technically, for each axis a ∈ {t, x, y}, we define a rota-
tion matrix R

(a)
p that operates on a dedicated subspace of an

embedding vector z. The embedding vector is partitioned
accordingly: z = [z(t), z(x), z(y)], where each subvector
z(a) ∈ Rda corresponds to axis a and d = dt+dx+dy . The
rotation matrix R

(a)
p is constructed in a block-wise manner,

rotating each pair of dimensions (2i, 2i + 1) by an angle
θ
(a)
p,i = p(a) · ω(a)

i , where ω
(a)
i = ω

−2i/da

base and ωbase is a
predefined constant:

R(a)
p =


R

(a,0)
p

. . .
R

(a,da/2−1)
p

 , where (4)

R(a,i)
p =

cos(θ(a)p,i

)
− sin

(
θ
(a)
p,i

)
sin

(
θ
(a)
p,i

)
cos

(
θ
(a)
p,i

)  . (5)

When computing self-attention, the rotated query q and key
k are obtained by applying the rotation matrices: q′(a) =

R
(a)
p q(a) and k′(a) = R

(a)
p k(a). The full rotated query

and key are then q′ = [q′(t), q′(x), q′(y)] and k′ =
[k′(t), k′(x), k′(y)]. When computing the attention between
tokens at positions j and k, the dot product incorporates the
rotations from all axes:

(q′⊤j )k′k =
∑

a∈{t,x,y}

(
q(a)

)⊤
R

(a)⊤
j R

(a)
k k(a). (6)

The key property of rotation matrices is that the product
of two rotation matrices corresponds to a rotation by the
difference of their angles:

R
(a)⊤
j R

(a)
k = R

(a)
j−k, (7)

where R
(a)
p−q is the rotation matrix for the relative position

j(a) − k(a), constructed as:

R
(a)
j−k =


R

(a,0)
j−k

. . .
R

(a,Na−1)
j−k

 , where (8)

R
(a,i)
j−k =

cos(∆(a)
jk ω

(a)
i

)
− sin

(
∆

(a)
jk ω

(a)
i

)
sin

(
∆

(a)
jk ω

(a)
i

)
cos

(
∆

(a)
jk ω

(a)
i

)  , (9)

∆
(a)
jk = j(a) − k(a). (10)

This block-wise matrix format explicitly shows that the at-
tention score depends on the relative positions j(a) − k(a)

along each axis a.

A.2. Algorithm Flows of LaVin-DiT
In this section, we present algorithm flows of the pro-
posed LaVin-DiT. It is built upon the flow matching frame-
work [36]. The training and inference procedures are pro-
vided in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 LaVin-DiT Training Procedure

Require: ST-VAE encoder Enc(·), dataset D = {xi}Ki=1,
initialized parameters θ of vector field vθ(z, t), total
iterations T , learning rate η.

1: for n = 1 to T do
2: Sample x ∼ D, c ∼ D
3: Compute latents: z0 ← Enc(x), zc ← Enc(c)
4: Initialize random latent: z1 ∼ N (0, 1)
5: Sample time step: t ∼ LogitNormal(0, 1)
6: Interpolate: zt ← (1− t)z1 + tz0
7: Target vector: u← z0 − z1
8: Predicted vector: v ← vθ(zt, zc, t)
9: Compute loss: L ← E[|v − u|22]

10: Update parameters: θ ← θ − η∇θL
11: end for

Training procedure. As illustrated in Algorithm 1, the pri-
mary goal is to learn a vector field vθ(z, t) that maps the
latent space dynamics conditioned on the target latent z0,
the task context latent zc, and a time step t. The training
process iteratively refines the parameters θ to minimize the
discrepancy between the predicted and ground-truth latent
trajectories.

Inference procedure. This process, described in Algo-
rithm 2, employs the learned vector field vθ to sample in the
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latent space. Starting with an initial latent z1 ∼ N (0, 1),
the method denoises iteratively using the Euler method.

Algorithm 2 LaVin-DiT Inference Procedure

Require: Trained vector field vθ(z, t), ST-VAE encoder
Enc(·), ST-VAE decoder Dec(·), timesteps N , dataset
D = {xi}Ki=1.

1: Set step size ∆t← 1
N , initialize t(N) ← 1

2: Sample initial latent: z1 ∼ N (0, 1)
3: Encode condition: zc ← Enc(c), c ∼ D
4: for k = N down to 1 do
5: Update time: t(k−1) ← t(k) −∆t
6: Compute vector field: v(k) ← vθ(z

(k), zc, t
(k))

7: Update latent: z(k−1) ← z(k) −∆t · v(k)

8: end for
9: Decode sample: ŷ ← Dec(z0)

Table 3. Configurations of LaVin-DiT with different numbers of
parameters.

LaVin-DiT
0.1B 1.0B 3.4B

Latent channels 16 16 16
Patch size 2× 2 2× 2 2× 2
Hidden channels 512 1024 2304
Num. layers 12 28 22
Num. heads 8 16 32
K.V. groups - - 4
Drop path 0.0 0.1 0.1
Uncond. ratio 0.1 0.1 0.1
Grad. clip 1.0 1.0 1.0
EMA moment. 0.9999 0.9999 0.9999
Extra norm. - S-Norm. S-Norm.
Position embed. 3D-RoPE 3D-RoPE 3D-RoPE

B. Supplementary Experimental Settings
B.1. Large-Scale Multi-Task Dataset Composition
Recall that we build a large-scale multi-task dataset to unify
diverse computer vision tasks. We integrate multiple public
image-level and video-level task benchmarks into a large-
scale dataset for training. Details are listed in Table 4.

B.2. Evaluation Metrics
In this work, we provide quantitative results for 10 tasks
(The others are presented with visualization results). Here
we introduce the evaluation metrics for these 10 tasks.

Colorization. We randomly sample 1,000 images from
ImageNet-1K validation set [18] and convert them into
grayscale. We adopt LPIPS [71] and mean squared error
(MSE) as metrics.

Inpainting. We randomly sample 1,000 images from
ImageNet-1K validation set [18] and mask out a 128× 128
region for each image. We adopt the LPIPS [71] and Frechet
Inception Distance (FID) as metrics.

Depth Estimation. We evaluate our model on NYUv2 test
set [52], including 654 images. Following the protocol of
affine-invariant depth evaluation [46], we first align the pre-
diction to the ground truth with the least squares fitting. Af-
terwards, we adopt Absolute Mean Relative Error (AbsRel)
and Mean Squared Error (MSE) as metrics.

Surface Normal Estimation. We evaluate our model on
NYUv2 test set [52]. Following the protocol used in [4], we
calculate the angular error between the prediction and the
ground-truth normal maps and use the mean angular error
as the metric.

Depth-to-Image Generation. We adopt all samples in the
NYUv2 dataset [52], including 1,449 images. Given the
pseudo label generated via Depth-anything V2 or Stable-
Normal (turbo), we generate the corresponding RGB im-
age and use the LPIPS [71] and Frechet Inception Distance
(FID) as metrics.

Normal-to-Image Generation. The metrics are the same
those in Depth-to-Image Generation.

Single Object Detection. We evaluate the model on the
Pascal-5i dataset [50] and adopt the mean intersection-over-
union (mIoU) as the metric.

Foreground Segmentation. We evaluate our model on the
Pascal-5i dataset [50], including 4 different test splits. Fol-
lowing the protocol in [8], we extract binary masks from
our predictions and report the mIoU.

Deraining. We randomly sample 1,000 images from
ImageNet-1K validation set [18] and apply the raining filter
on them. We adopt the Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM) as metrics.

De-motion Blur. We randomly sample 1,000 images from
the ImageNet-1K validation set [18] and apply motion blur
on these images. We adopt the PSNR and SSIM as metrics.

B.3. Architecture Details of LaVin-DiT
Here we detail the architecture of the LaVin-DiT mod-
els. Table 3 outlines the configurations for three parameter
scales: 0.1B, 1.0B, and 3.4B. Each configuration is charac-
terized by key architectural hyperparameters, including the
number of latent channels, patch size, hidden channels, and
the number of layers. Additionally, the configurations spec-
ify the number of attention heads, key-value groups, drop
path rates, and unconditional ratios. To further enhance
model training, we incorporate advanced techniques such
as gradient clipping and the Exponential Moving Average
(EMA). All models utilize 3D-RoPE to ensure consistent
spatial and temporal encoding across scales. For large mod-
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Table 4. Summary of the large-scale multi-task dataset used in LaVin-DiT, including the number of examples and annotation types for each
component dataset. Tasks range from visual understanding and generation.

Task Dataset Number of Samples Annotation Type

Single Object Detection COCO 2017 train [34] 117,266 Ground Truth
Object365 train [51] 1,728,778 Ground Truth

Instance Segmentation
COCO 2017 train [34] 117,266 Ground Truth
ADE20K train+val [76] 19,020 Ground Truth
Cityscapes train+val [16] 3,457 Ground Truth

Panoptic Segmentation
COCO 2017 train [34] 117,266 Ground Truth
ADE20K train+val [76] 19,020 Ground Truth
Cityscapes train+val [16] 3,457 Ground Truth

Pose Estimation COCO 2017 train [34] 64,115 Ground Truth
Pose-to-Image Generation COCO 2017 train [34] 64,115 Ground Truth
Depth Estimation ImageNet1K train [18] 1,281,167 Depth-anything V2
Depth-to-Image Generation ImageNet1K train [18] 1,281,167 Depth-anything V2

Surface Normal Estimation
COCO 2017 train [34] 117,266 Stable-Normal (turbo)
ADE20K train+val [76] 19,020 Stable-Normal (turbo)
Cityscapes train+val [16] 3,457 Stable-Normal (turbo)

Normal-to-Image Generation
COCO 2017 train [34] 117,266 Stable-Normal (turbo)
ADE20K train+val [76] 19,020 Stable-Normal (turbo)
Cityscapes train+val [16] 3,457 Stable-Normal (turbo)

Edge Detection ImageNet1K [18] train 1,281,167 Canny (OpenCV)
COCO 2017 train [34] 117,266 Canny (OpenCV)

Inpainting ImageNet1K train [18] 1,281,167 Crop (OpenCV)
COCO 2017 train [34] 117,266 Crop (OpenCV)

Colorization ImageNet1K train [18] 1,281,167 Grayscale (OpenCV)
COCO 2017 train [34] 117,266 Grayscale (OpenCV)

De-glass Blur ImageNet1K train [18] 1,281,167 Albumentations
COCO 2017 train [34] 117,266 Albumentations

De-motion Blur ImageNet1K train [18] 1,281,167 Albumentations
COCO 2017 train [34] 117,266 Albumentations

De-raining ImageNet1K train [18] 1,281,167 Albumentations
COCO 2017 train [34] 117,266 Albumentations

Frame Prediction
UCF101 train [53] 7,629 N/A
Kinetic 700 train+val [28] 570,465 N/A
Kubric train [25] 48,689 N/A

Video Depth Estimation Kubric train [25] 48,689 Ground Truth
Depth-to-Video Generation Kubric train [25] 48,689 Ground Truth
Video Surface Normal Estimation Kubric train [25] 48,689 Ground Truth
Normal-to-Video Generation Kubric train [25] 48,689 Ground Truth
Video Optical Flow Estimation Kubric train [25] 48,689 Ground Truth
Video Instance Segmentation Kubric train [25] 48,689 Ground Truth

els, we employ sandwich normalization to improve training
stability.

C. Supplementary Qualitative Results

We show more visualization results for each task, including
object detection (Figure 8), foreground segmentation (Fig-
ure 9), panoptic segmentation (Figure 10), pose estimation

(Figure 11), pose-to-image generation (Figure 12), depth
estimation (Figure 13), depth-to-image generation (Fig-
ure 14), surface normal estimation (Figure 15), normal-to-
image generation (Figure 16), edge detection (Figure 17),
inpainting (Figure 18), colorization (Figure 19), de-glass
blur (Figure 20), de-motion blur (Figure 21), de-raining
(Figure 22), frame prediction (Figure 23), video depth esti-
mation (Figure 24), depth-to-video generation (Figure 25),
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Figure 8. Qualitative results on object detection. Each row contains a sequence of images interleaved with annotations, followed by a
query. The last image is predicted by the model (marked in red). Best viewed in color.

video surface normal estimation (Figure 26), normal-to-
video generation (Figure 27), video optical flow estimation
(Figure 28), and video instance segmentation (Figure 29).

D. Potential Applications

LaVin-DiT opens transformative possibilities for tackling
open-world computer vision challenges by unifying diverse
vision tasks within a single generative framework. For in-
stance, it can seamlessly generalize across tasks such as
text-to-image generation, text-to-video generation, video
understanding, 3D reconstruction (Figure 30), and 2D/3D

visual editing without supervised fine-tuning. By leverag-
ing its spatial-temporal variational autoencoder and joint
diffusion transformer, LaVin-DiT excels at capturing the
complexity of high-dimensional visual data while main-
taining task-specific alignment through in-context learning.
This capability positions LaVin-DiT as a foundation model
capable of addressing dynamic realistic vision problems, in-
cluding autonomous driving perception, robotic scene un-
derstanding, and interactive AI systems in mixed-reality en-
vironments, significantly advancing the frontier of adapt-
able and scalable AI systems.

15



Figure 9. Qualitative results on foreground segmentation. Each row contains a sequence of images interleaved with annotations,
followed by a query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 10. Qualitative results on panoptic segmentation. Each row contains a sequence of images interleaved with annotations, followed
by a query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 11. Qualitative results on pose estimation. Each row contains a sequence of images interleaved with annotations, followed by a
query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 12. Qualitative results on pose-to-image generation. Each row contains a sequence of images interleaved with annotations,
followed by a query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 13. Qualitative results on depth estimation. Each row contains a sequence of images interleaved with annotations, followed by a
query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 14. Qualitative results on depth-to-image generation. Each row contains a sequence of images interleaved with annotations,
followed by a query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 15. Qualitative results on surface normal estimation. Each row contains a sequence of images interleaved with annotations,
followed by a query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 16. Qualitative results on normal-to-image generation. Each row contains a sequence of images interleaved with annotations,
followed by a query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 17. Qualitative results on edge detection. Each row contains a sequence of images interleaved with annotations, followed by a
query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 18. Qualitative results on inpainting. Each row contains a sequence of images interleaved with annotations, followed by a query.
The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 19. Qualitative results on image colorization. Each row contains a sequence of images interleaved with annotations, followed by
a query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 20. Qualitative results on de-glass blur. Each row contains a sequence of images interleaved with annotations, followed by a
query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 21. Qualitative results on de-motion blur. Each row contains a sequence of images interleaved with annotations, followed by a
query. The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 22. Qualitative results on de-raining. Each row contains a sequence of images interleaved with annotations, followed by a query.
The last image is predicted by the model (marked in red). Best viewed in color.
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Figure 23. Qualitative results on frame prediction. Each row includes a video sequence with a series of target frames as task context
(marked in blue), followed by a query frame (marked in yellow). A set of frames in the red box indicates the model’s predictions. Due to
the length of the sequence, a portion of the task context is hidden. Best viewed in color.
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Figure 24. Qualitative results on video depth estimation. Each row includes a video sequence with a series of target frames as task
context (marked in blue), followed by a query frame (marked in yellow). A set of frames in the red box indicates the model’s predictions.
Due to the length of the sequence, a portion of the task context is hidden. Best viewed in color.
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Figure 25. Qualitative results on depth-to-video generation. Each row includes a video sequence with a series of target frames as task
context (marked in blue), followed by a query frame (marked in yellow). A set of frames in the red box indicates the model’s predictions.
Due to the length of the sequence, a portion of the task context is hidden. Best viewed in color.
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Figure 26. Qualitative results on video surface normal estimation. Each row includes a video sequence with a series of target frames
as task context (marked in blue), followed by a query frame (marked in yellow). A set of frames in the red box indicates the model’s
predictions. Due to the length of the sequence, a portion of the task context is hidden. Best viewed in color.
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Figure 27. Qualitative results on normal-to-video generation. Each row includes a video sequence with a series of target frames as task
context (marked in blue), followed by a query frame (marked in yellow). A set of frames in the red box indicates the model’s predictions.
Due to the length of the sequence, a portion of the task context is hidden. Best viewed in color.
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Figure 28. Qualitative results on optical flow estimation. Each row includes a video sequence with a series of target frames as task
context (marked in blue), followed by a query frame (marked in yellow). A set of frames in the red box indicates the model’s predictions.
Due to the length of the sequence, a portion of the task context is hidden. Best viewed in color.
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Figure 29. Qualitative results on video instance segmentation. Each row includes a video sequence with a series of target frames as task
context (marked in blue), followed by a query frame (marked in yellow). A set of frames in the red box indicates the model’s predictions.
Due to the length of the sequence, a portion of the task context is hidden. Best viewed in color.
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Figure 30. Potential application of single-view scene reconstruction. Given an RGB image and predicted depth map, we lift this image
into a 3D space. We illustrate three views of this scene. Best viewed in color.
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